Alert on common Kubernetes/OpenShift issues

Dynatrace version 1.254+

ActiveGate version 1.253+

To alert on common Kubernetes platform issues, follow the instructions below.

Configure

There are three ways to configure alerts for common Kubernetes/OpenShift issues.

Configuring an alert on a different level is only intended to simplify the configuration of multiple entities at once. It does not change the behavior of an alert.

For example, enabling a workload CPU usage saturation alert will still evaluate and raise problems for each Kubernetes workload separately, even if it has been configured on the Kubernetes cluster level.

For further details on the settings hierarchy, see Settings documentation.

View alerts

Manually closed problems will show up again after 60 days if their root cause remains unresolved.

You can view alerts

  • On the Problems page.

    Example problem:

    k8s-alert-view-in-problems

  • In the Events section of a cluster details page.

    Example event:

    k8s-alert-view-in-events

    Select the event to navigate to Data Explorer for more information about the metric that generated the event.

Available alerts

See below for a list of available alerts.

Cluster alerts

Alert name

Dynatrace version

Problem type

Problem title

Problem description

De-alerts after

Calculation

Supported in

1.254

Resource

CPU-request saturation on cluster

CPU-request saturation exceeds the specified threshold.

10 minutes

Node CPU requests / Node CPU allocatable

Kubernetes Classic, Kubernetes app

1.254

Resource

Memory-request saturation on cluster

Memory-request saturation exceeds the specified threshold.

10 minutes

Node memory requests / Node memory allocatable

Kubernetes Classic, Kubernetes app

1.258

Resource

Pod saturation on cluster

Cluster pod-saturation exceeds the specified threshold.

10 minutes

Sum of ready pods / Sum of allocatable pods

Kubernetes Classic, Kubernetes app

1.254

Availability

Cluster not ready

Readyz endpoint indicates that this cluster is not ready.

10 minutes

Cluster readyz metric

Kubernetes Classic, Kubernetes app

1.258

Availability

Monitoring not available

Dynatrace API monitoring is not available.

10 minutes

Kubernetes Classic, Kubernetes app

Detect cluster CPU-request saturation

Type
Expression
Metric expression
builtin:kubernetes.node.requests_cpu:splitBy():sum/builtin:kubernetes.node.cpu_allocatable:splitBy():sum*100.0
DQL
timeseries o1=sum(dt.kubernetes.container.requests_cpu, rollup: avg), nonempty:true, filter: {(dt.kubernetes.container.type=="app")}, by: {}| join [timeseries operand=sum(dt.kubernetes.node.cpu_allocatable, rollup: avg), nonempty:true, by: {}], on: {interval}, fields: {o2=operand}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect cluster memory-request saturation

Type
Expression
Metric expression
builtin:kubernetes.node.requests_memory:splitBy():sum/builtin:kubernetes.node.memory_allocatable:splitBy():sum*100.0
DQL
timeseries o1=sum(dt.kubernetes.container.requests_memory, rollup: avg), nonempty:true, filter: {(dt.kubernetes.container.type=="app")}, by: {}| join [timeseries operand=sum(dt.kubernetes.node.memory_allocatable, rollup: avg), nonempty:true, by: {}], on: {interval}, fields: {o2=operand}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect cluster pod-saturation

Type
Expression
Metric expression
(builtin:kubernetes.node.pods:filter(and(eq(pod_condition,Ready))):splitBy():sum/builtin:kubernetes.node.pods_allocatable:splitBy():sum):default(0.0)*100.0
DQL
timeseries o1=sum(dt.kubernetes.pods, rollup: avg), nonempty:true, filter: {((pod_condition=="Ready"))}, by: {}| join [timeseries operand=sum(dt.kubernetes.node.pods_allocatable, rollup: avg), nonempty:true, by: {}], on: {interval}, fields: {o2=operand}| fieldsAdd result=if(isNull(o1[]/o2[]), 0.0, else: o1[]/o2[])* 100.0| fieldsRemove {o1,o2}

Detect cluster readiness issues

Type
Expression
Metric expression
builtin:kubernetes.cluster.readyz:splitBy():sum
DQL
timeseries {sum(dt.kubernetes.cluster.readyz, rollup: avg)}, by: {}

Detect monitoring issues

Type
Expression
Metric expression
(no metric expression)
DQL
(no DQL)
AlertSettingValue

Readiness Issues

sample period in minutes

3

observation period in minutes

5

Monitoring Issues

sample period in minutes

15

observation period in minutes

30

Namespace alerts

Alert name

Dynatrace version

Problem type

Problem title

Problem description

De-alerts after

Calculation

Supported in

1.254

Resource

CPU-limit quota saturation

CPU-limit quota saturation exceeds the specified threshold.

10 minutes

Sum of resource quota CPU used / Sum of resource quota CPU limits

Kubernetes Classic, Kubernetes app

1.254

Resource

CPU-request quota saturation

CPU-request quota saturation exceeds the specified threshold.

10 minutes

Sum of resource quota CPU used / Sum of resource quota CPU requests

Kubernetes Classic, Kubernetes app

1.254

Resource

Memory-limit quota saturation

Memory-limit quota saturation exceeds the specified threshold.

10 minutes

Sum of resource quota memory used / Sum of resource quota memory limits

Kubernetes Classic, Kubernetes app

1.254

Resource

Memory-request quota saturation

Memory-request quota saturation exceeds the specified threshold.

10 minutes

Sum of resource quota memory used / Sum of resource quota memory requests

Kubernetes Classic, Kubernetes app

1.254

Resource

Pod quota saturation

Pod quota saturation exceeds the specified threshold.

10 minutes

Sum of resource quota pods used / Sum of resource quota pods limit

Kubernetes Classic, Kubernetes app

Detect namespace CPU-limit quota saturation

Type
Expression
Metric expression
builtin:kubernetes.resourcequota.limits_cpu_used:splitBy(k8s.namespace.name):sum/builtin:kubernetes.resourcequota.limits_cpu:splitBy(k8s.namespace.name):sum*100.0
DQL
timeseries {o1=sum(dt.kubernetes.resourcequota.limits_cpu_used, rollup: avg), o2=sum(dt.kubernetes.resourcequota.limits_cpu, rollup: avg)}, by: {k8s.namespace.name}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect namespace CPU-request quota saturation

Type
Expression
Metric expression
builtin:kubernetes.resourcequota.requests_cpu_used:splitBy(k8s.namespace.name):sum/builtin:kubernetes.resourcequota.requests_cpu:splitBy(k8s.namespace.name):sum*100.0
DQL
timeseries {o1=sum(dt.kubernetes.resourcequota.requests_cpu_used, rollup: avg), o2=sum(dt.kubernetes.resourcequota.requests_cpu, rollup: avg)}, by: {k8s.namespace.name}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect namespace memory-limit quota saturation

Type
Expression
Metric expression
builtin:kubernetes.resourcequota.limits_memory_used:splitBy(k8s.namespace.name):sum/builtin:kubernetes.resourcequota.limits_memory:splitBy(k8s.namespace.name):sum*100.0
DQL
timeseries {o1=sum(dt.kubernetes.resourcequota.limits_memory_used, rollup: avg), o2=sum(dt.kubernetes.resourcequota.limits_memory, rollup: avg)}, by: {k8s.namespace.name}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect namespace memory-request quota saturation

Type
Expression
Metric expression
builtin:kubernetes.resourcequota.requests_memory_used:splitBy(k8s.namespace.name):sum/builtin:kubernetes.resourcequota.requests_memory:splitBy(k8s.namespace.name):sum*100.0
DQL
timeseries {o1=sum(dt.kubernetes.resourcequota.requests_memory_used, rollup: avg), o2=sum(dt.kubernetes.resourcequota.requests_memory, rollup: avg)}, by: {k8s.namespace.name}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect namespace pod quota saturation

Type
Expression
Metric expression
builtin:kubernetes.resourcequota.pods_used:splitBy(k8s.namespace.name):sum/builtin:kubernetes.resourcequota.pods:splitBy(k8s.namespace.name):sum*100.0
DQL
timeseries {o1=sum(dt.kubernetes.resourcequota.pods_used, rollup: avg), o2=sum(dt.kubernetes.resourcequota.pods, rollup: avg)}, by: {k8s.namespace.name}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Node alerts

Alert name

Dynatrace version

Problem type

Problem title

Problem description

De-alerts after

Calculation

Supported in

1.254

Resource

CPU-request saturation on node

CPU-request saturation exceeds the specified threshold.

10 minutes

Sum of node CPU requests / Sum of node CPU allocatable

Kubernetes Classic, Kubernetes app

1.254

Resource

Memory-request saturation on node

Memory-request saturation exceeds the specified threshold.

10 minutes

Sum of node memory requests / Sum of node memory allocatable

Kubernetes Classic, Kubernetes app

1.254

Resource

Pod saturation on node

Pod saturation exceeds the specified threshold.

10 minutes

Sum of running pods on node / Node pod limit

Kubernetes Classic, Kubernetes app

1.254

Availability

Node not ready

Node is not ready.

10 minutes

Node condition metric filtered by 'not ready'

Kubernetes Classic, Kubernetes app

1.264

Error

Problematic node condition

Node has one or more problematic conditions out of the following: ContainerRuntimeProblem, ContainerRuntimeUnhealthy, CorruptDockerOverlay2, DiskPressure, FilesystemCorruptionProblem, FrequentContainerdRestart, FrequentDockerRestart, FrequentGcfsSnapshotterRestart, FrequentGcfsdRestart, FrequentKubeletRestart, FrequentUnregisterNetDevice, GcfsSnapshotterMissingLayer, GcfsSnapshotterUnhealthy, GcfsdUnhealthy, KernelDeadlock, KubeletProblem, KubeletUnhealthy, MemoryPressure, NetworkUnavailable, OutOfDisk, PIDPressure, ReadonlyFilesystem

10 minutes

Nodes condition metric

Kubernetes Classic, Kubernetes app

Detect node CPU-request saturation

Type
Expression
Metric expression
builtin:kubernetes.node.requests_cpu:splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum/builtin:kubernetes.node.cpu_allocatable:splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum*100.0
DQL
timeseries o1=sum(dt.kubernetes.container.requests_cpu, rollup: avg), nonempty:true, filter: {(dt.kubernetes.container.type=="app")}, by: {dt.kubernetes.node.system_uuid,k8s.node.name}| join [timeseries operand=sum(dt.kubernetes.node.cpu_allocatable, rollup: avg), nonempty:true, by: {dt.kubernetes.node.system_uuid,k8s.node.name}], on: {interval}, fields: {o2=operand}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect node memory-request saturation

Type
Expression
Metric expression
builtin:kubernetes.node.requests_memory:splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum/builtin:kubernetes.node.memory_allocatable:splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum*100.0
DQL
timeseries o1=sum(dt.kubernetes.container.requests_memory, rollup: avg), nonempty:true, filter: {(dt.kubernetes.container.type=="app")}, by: {dt.kubernetes.node.system_uuid,k8s.node.name}| join [timeseries operand=sum(dt.kubernetes.node.memory_allocatable, rollup: avg), nonempty:true, by: {dt.kubernetes.node.system_uuid,k8s.node.name}], on: {interval}, fields: {o2=operand}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect node pod-saturation

Type
Expression
Metric expression
builtin:kubernetes.node.pods:filter(and(eq(pod_phase,Running))):splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum/builtin:kubernetes.node.pods_allocatable:splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum*100.0
DQL
timeseries o1=sum(dt.kubernetes.pods, rollup: avg), nonempty:true, filter: {((pod_phase=="Running"))}, by: {dt.kubernetes.node.system_uuid,k8s.node.name}| join [timeseries operand=sum(dt.kubernetes.node.pods_allocatable, rollup: avg), nonempty:true, by: {dt.kubernetes.node.system_uuid,k8s.node.name}], on: {interval}, fields: {o2=operand}| fieldsAdd result=o1[]/o2[]* 100.0| fieldsRemove {o1,o2}

Detect node readiness issues

Type
Expression
Metric expression
builtin:kubernetes.node.conditions:filter(and(eq(node_condition,Ready),ne(condition_status,True))):splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum
DQL
timeseries {sum(dt.kubernetes.node.conditions, rollup: avg)}, filter: {((node_condition=="Ready")AND(condition_status!=true))}, by: {dt.kubernetes.node.system_uuid,k8s.node.name}

Detect problematic node conditions

Type
Expression
Metric expression
builtin:kubernetes.node.conditions:filter(and(or(eq(node_condition,ContainerRuntimeProblem),eq(node_condition,ContainerRuntimeUnhealthy),eq(node_condition,CorruptDockerOverlay2),eq(node_condition,DiskPressure),eq(node_condition,FilesystemCorruptionProblem),eq(node_condition,FrequentContainerdRestart),eq(node_condition,FrequentDockerRestart),eq(node_condition,FrequentGcfsSnapshotterRestart),eq(node_condition,FrequentGcfsdRestart),eq(node_condition,FrequentKubeletRestart),eq(node_condition,FrequentUnregisterNetDevice),eq(node_condition,GcfsSnapshotterMissingLayer),eq(node_condition,GcfsSnapshotterUnhealthy),eq(node_condition,GcfsdUnhealthy),eq(node_condition,KernelDeadlock),eq(node_condition,KubeletProblem),eq(node_condition,KubeletUnhealthy),eq(node_condition,MemoryPressure),eq(node_condition,NetworkUnavailable),eq(node_condition,OutOfDisk),eq(node_condition,PIDPressure),eq(node_condition,ReadonlyFilesystem)),eq(condition_status,True))):splitBy(dt.kubernetes.node.system_uuid,k8s.node.name):sum
DQL
timeseries {sum(dt.kubernetes.node.conditions, rollup: avg)}, filter: {(((node_condition=="ContainerRuntimeProblem")OR(node_condition=="ContainerRuntimeUnhealthy")OR(node_condition=="CorruptDockerOverlay2")OR(node_condition=="DiskPressure")OR(node_condition=="FilesystemCorruptionProblem")OR(node_condition=="FrequentContainerdRestart")OR(node_condition=="FrequentDockerRestart")OR(node_condition=="FrequentGcfsSnapshotterRestart")OR(node_condition=="FrequentGcfsdRestart")OR(node_condition=="FrequentKubeletRestart")OR(node_condition=="FrequentUnregisterNetDevice")OR(node_condition=="GcfsSnapshotterMissingLayer")OR(node_condition=="GcfsSnapshotterUnhealthy")OR(node_condition=="GcfsdUnhealthy")OR(node_condition=="KernelDeadlock")OR(node_condition=="KubeletProblem")OR(node_condition=="KubeletUnhealthy")OR(node_condition=="MemoryPressure")OR(node_condition=="NetworkUnavailable")OR(node_condition=="OutOfDisk")OR(node_condition=="PIDPressure")OR(node_condition=="ReadonlyFilesystem"))AND(condition_status==true))}, by: {dt.kubernetes.node.system_uuid,k8s.node.name}
AlertSettingValue

Readiness Issues

sample period in minutes

3

observation period in minutes

5

Node Problematic Condition

sample period in minutes

3

observation period in minutes

5

Persistent volume claims alerts

Alert name

Dynatrace version

Problem type

Problem title

Problem description

De-alerts after

Calculation

Supported in

1.294

RESOURCE_CONTENTION

Kubernetes PVC: Low disk space %

Available disk space for a persistent volume claim is below the threshold.

10 minutes

Volume stats available bytes / Volume stats capacity bytes

Kubernetes Classic, Kubernetes app

1.294

RESOURCE_CONTENTION

Kubernetes PVC: Low disk space

Available disk space for a persistent volume claim is below the threshold.

10 minutes

Kubelet volume stats available bytes metric

Kubernetes Classic, Kubernetes app

Detect low disk space (%)

Type
Expression
Metric expression
builtin:kubernetes.persistentvolumeclaim.available:splitBy(k8s.namespace.name,k8s.persistent_volume_claim.name):avg/builtin:kubernetes.persistentvolumeclaim.capacity:splitBy(k8s.namespace.name,k8s.persistent_volume_claim.name):avg*100.0
DQL
timeseries {o1=avg(dt.kubernetes.persistentvolumeclaim.available), o2=avg(dt.kubernetes.persistentvolumeclaim.capacity)}, by: {k8s.namespace.name, k8s.persistentvolumeclaim.name} | fieldsAdd result=o1[]/o2[]* 100.0 | fieldsRemove {o1,o2}

Detect low disk space (MiB)

Type
Expression
Metric expression
builtin:kubernetes.persistentvolumeclaim.available:splitBy(k8s.namespace.name,k8s.persistent_volume_claim.name):avg
DQL
timeseries {avg(dt.kubernetes.persistentvolumeclaim.available)}, by: {k8s.namespace.name,k8s.persistentvolumeclaim.name}

Workload alerts

Alert name

Dynatrace version

Problem type

Problem title

Problem description

De-alerts after

Calculation

Supported in

1.264

Resource

CPU usage close to limits

The CPU usage exceeds the threshold in terms of the defined CPU limit.

10 minutes

Sum of workload CPU usage / Sum of workload CPU limits

Kubernetes Classic, Kubernetes app

1.254

Error

Container restarts

Observed container restarts exceed the specified threshold.

15 minutes

Container restarts metric

Kubernetes Classic, Kubernetes app

1.264

Resource

High CPU throttling

The CPU throttling to usage ratio exceeds the specified threshold.

10 minutes

Sum of workload CPU throttled / Sum of workload CPU usage

Kubernetes Classic, Kubernetes app

1.268

Error

Job failure event

Events with reason 'BackoffLimitExceeded', 'DeadlineExceeded', or 'PodFailurePolicy' have been detected.

60 minutes

Event metric filtered by reason and workload kind

Kubernetes Classic, Kubernetes app

1.264

Resource

Memory usage close to limits

The memory usage (working set memory) exceeds the threshold in terms of the defined memory limit.

10 minutes

Sum of workload working set memory / Sum of workload memory limits

Kubernetes Classic, Kubernetes app

1.268

Error

Out-of-memory kills

Out-of-memory kills have been observed for pods of this workload.

15 minutes

Out-of-memory kills metric

Kubernetes Classic, Kubernetes app

1.268

Error

Backoff event

Events with reason 'BackOff' have been detected for pods of this workload. Check for pods with status 'ImagePullBackOff' or 'CrashLoopBackOff'.

15 minutes

Event metric filtered by reason

Kubernetes Classic, Kubernetes app

1.268

Error

Pod eviction event

Events with reason 'Evicted' have been detected for pods of this workload.

60 minutes

Event metric filtered by reason

Kubernetes Classic, Kubernetes app

1.268

Error

Preemption event

Events with reasons 'Preempted' or 'Preempting' have been detected for pods of this workload.

60 minutes

Event metric filtered by reason

Kubernetes Classic, Kubernetes app

1.254

Resource

Pods stuck in pending

Workload has pending pods.

10 minutes

Pods metric filtered by phase 'Pending'

Kubernetes Classic, Kubernetes app

1.260

Resource

Pods stuck in terminating

Workload has pods stuck in terminating.

10 minutes

Pods metric filtered by status 'Terminating'

Kubernetes Classic, Kubernetes app

1.260

Error

Deployment stuck

Deployment is stuck and therefore is no longer progressing.

10 minutes

Workload condition metric filtered by 'not progressing'

Kubernetes Classic, Kubernetes app

1.258

Error

Not all pods ready

Workload has pods that are not ready.

10 minutes

Sum of non-failed pods - Sum of non-failed and non-ready pods

Kubernetes Classic, Kubernetes app

1.254

Error

No pod ready

Workload does not have any ready pods.

10 minutes

Sum of non-failed pods - Sum of non-failed and non-ready pods

Kubernetes Classic, Kubernetes app

Detect CPU usage saturation

Type
Expression
Metric expression
(builtin:kubernetes.workload.cpu_usage:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum/builtin:kubernetes.workload.limits_cpu:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum):default(0.0)*100.0
DQL
timeseries o1=sum(dt.kubernetes.container.cpu_usage, rollup: avg), nonempty:true, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}| join [timeseries operand=sum(dt.kubernetes.container.limits_cpu, rollup: avg), nonempty:true, filter: {(dt.kubernetes.container.type=="app")}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}], on: {interval}, fields: {o2=operand}| fieldsAdd result=if(isNull(o1[]/o2[]), 0.0, else: o1[]/o2[])* 100.0| fieldsRemove {o1,o2}

Detect container restarts

Type
Expression
Metric expression
builtin:kubernetes.container.restarts:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries {sum(dt.kubernetes.container.restarts, default:0.0, rollup: avg)}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect high CPU throttling

Type
Expression
Metric expression
(builtin:kubernetes.workload.cpu_throttled:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum/builtin:kubernetes.workload.cpu_usage:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum):default(0.0)*100.0
DQL
timeseries {o1=sum(dt.kubernetes.container.cpu_throttled, rollup: avg), o2=sum(dt.kubernetes.container.cpu_usage, rollup: avg)}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}| fieldsAdd result=if(isNull(o1[]/o2[]), 0.0, else: o1[]/o2[])* 100.0| fieldsRemove {o1,o2}

Detect job failure events

Type
Expression
Metric expression
builtin:kubernetes.events:filter(and(or(eq(k8s.event.reason,BackoffLimitExceeded),eq(k8s.event.reason,DeadlineExceeded),eq(k8s.event.reason,PodFailurePolicy)),or(eq(k8s.workload.kind,job),eq(k8s.workload.kind,cronjob)))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries {sum(dt.kubernetes.events, default:0.0, rollup: avg)}, filter: {(((k8s.event.reason=="BackoffLimitExceeded")OR(k8s.event.reason=="DeadlineExceeded")OR(k8s.event.reason=="PodFailurePolicy"))AND((k8s.workload.kind=="job")OR(k8s.workload.kind=="cronjob")))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect memory usage saturation

Type
Expression
Metric expression
(builtin:kubernetes.workload.memory_working_set:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum/builtin:kubernetes.workload.limits_memory:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum):default(0.0)*100.0
DQL
timeseries o1=sum(dt.kubernetes.container.memory_working_set, rollup: avg), nonempty:true, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}| join [timeseries operand=sum(dt.kubernetes.container.limits_memory, rollup: avg), nonempty:true, filter: {(dt.kubernetes.container.type=="app")}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}], on: {interval}, fields: {o2=operand}| fieldsAdd result=if(isNull(o1[]/o2[]), 0.0, else: o1[]/o2[])* 100.0| fieldsRemove {o1,o2}

Detect out-of-memory kills

Type
Expression
Metric expression
builtin:kubernetes.container.oom_kills:splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries {sum(dt.kubernetes.container.oom_kills, default:0.0, rollup: avg)}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect pod backoff events

Type
Expression
Metric expression
builtin:kubernetes.events:filter(and(eq(k8s.event.reason,BackOff))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries {sum(dt.kubernetes.events, default:0.0, rollup: avg)}, filter: {((k8s.event.reason=="BackOff"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect pod eviction events

Type
Expression
Metric expression
builtin:kubernetes.events:filter(and(eq(k8s.event.reason,Evicted))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries {sum(dt.kubernetes.events, default:0.0, rollup: avg)}, filter: {((k8s.event.reason=="Evicted"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect pod preemption events

Type
Expression
Metric expression
builtin:kubernetes.events:filter(or(eq(k8s.event.reason,Preempted),eq(k8s.event.reason,Preempting))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries {sum(dt.kubernetes.events, default:0.0, rollup: avg)}, filter: {((k8s.event.reason=="Preempted")OR(k8s.event.reason=="Preempting"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect pods stuck in pending

Type
Expression
Metric expression
builtin:kubernetes.pods:filter(and(eq(pod_phase,Pending))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum
DQL
timeseries {sum(dt.kubernetes.pods, rollup: avg)}, filter: {((pod_phase=="Pending"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect pods stuck in terminating

Type
Expression
Metric expression
builtin:kubernetes.pods:filter(and(eq(pod_status,Terminating))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum
DQL
timeseries {sum(dt.kubernetes.pods, rollup: avg)}, filter: {((pod_status=="Terminating"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect stuck deployments

Type
Expression
Metric expression
builtin:kubernetes.workload.conditions:filter(and(eq(workload_condition,Progressing),eq(condition_status,False))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum
DQL
timeseries {sum(dt.kubernetes.workload.conditions, rollup: avg)}, filter: {((workload_condition=="Progressing")AND(condition_status==false))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}

Detect workloads with non-ready pods

Type
Expression
Metric expression
builtin:kubernetes.pods:filter(and(ne(pod_phase,Failed),ne(pod_phase,Succeeded),ne(k8s.workload.kind,job),ne(k8s.workload.kind,cronjob),ne(pod_status,Terminating))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum-builtin:kubernetes.pods:filter(and(ne(pod_phase,Failed),ne(pod_phase,Succeeded),ne(k8s.workload.kind,job),ne(k8s.workload.kind,cronjob),eq(pod_condition,Ready),ne(pod_status,Terminating))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries o1=sum(dt.kubernetes.pods, rollup: avg), filter: {((pod_phase!="Failed")AND(pod_phase!="Succeeded")AND(k8s.workload.kind!="job")AND(k8s.workload.kind!="cronjob")AND(pod_status!="Terminating"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}| join [timeseries operand=sum(dt.kubernetes.pods, default:0.0, rollup: avg), nonempty:true, filter: {((pod_phase!="Failed")AND(pod_phase!="Succeeded")AND(k8s.workload.kind!="job")AND(k8s.workload.kind!="cronjob")AND(pod_condition=="Ready")AND(pod_status!="Terminating"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}], on: {interval}, fields: {o2=operand}| fieldsAdd result=o1[]-o2[]| fieldsRemove {o1,o2}

Detect workloads without ready pods

Type
Expression
Metric expression
builtin:kubernetes.pods:filter(and(ne(pod_phase,Failed),ne(pod_phase,Succeeded),ne(k8s.workload.kind,job),ne(k8s.workload.kind,cronjob))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum-builtin:kubernetes.pods:filter(and(ne(pod_phase,Failed),ne(pod_phase,Succeeded),ne(k8s.workload.kind,job),ne(k8s.workload.kind,cronjob),ne(pod_condition,Ready))):splitBy(k8s.namespace.name,k8s.workload.kind,k8s.workload.name):sum:default(0.0)
DQL
timeseries o1=sum(dt.kubernetes.pods, rollup: avg), filter: {((pod_phase!="Failed")AND(pod_phase!="Succeeded")AND(k8s.workload.kind!="job")AND(k8s.workload.kind!="cronjob"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}| join [timeseries operand=sum(dt.kubernetes.pods, default:0.0, rollup: avg), nonempty:true, filter: {((pod_phase!="Failed")AND(pod_phase!="Succeeded")AND(k8s.workload.kind!="job")AND(k8s.workload.kind!="cronjob")AND(pod_condition!="Ready"))}, by: {k8s.namespace.name,k8s.workload.kind,k8s.workload.name}], on: {interval}, fields: {o2=operand}| fieldsAdd result=o1[]-o2[]| fieldsRemove {o1,o2}
AlertSettingValue

Container Restarts

threshold

1

sample period in minutes

3

observation period in minutes

5

Deployment Stuck

sample period in minutes

3

observation period in minutes

5

Pending Pods

threshold

1

sample period in minutes

10

observation period in minutes

15

Pod Stuck In Terminating

sample period in minutes

10

observation period in minutes

15

Workload Without Ready Pods

sample period in minutes

10

observation period in minutes

15

Oom Kills

alert

always

Job Failure Events

alert

always

Pod Backoff Events

alert

always

Pod Eviction Events

alert

always

Pod Preemption Events

alert

always